Efficient Lossless Real-Time Stream Processing

Stephen A. Broeker steve_broeker@yahoo.com
supervised by Ahmed Amer aamer@scu.edu and Weijia Shang wshang@scu.edu

February 22, 2011

Abstract

Streaming OLAP is relatively new (traditional OLAP
focuses on data warehousing - data at rest). This is
the first solution that handles the full data path, not
through sampling (a serious compromise necessitated
by existing approaches). As well as improving perfor-
mance for existing applications, this is particularly
critical for security applications and forensic pro-
cessing, which are applications that are now enabled.
My experiments show that the effective observed in-
put rate for a one gigabit Ethernet Network Interface
Card (NIC) is up to 3 million flows per hour. This
input rate is too much for existing databases. The
proposed database can process over 113 million net-
work data flows per hour, a near 40 fold improvement
in performance.

1 Introduction

OnLine Analytical Processing (OLAP) engines are
commonly implemented as multidimensional data
cubes - called hypercubes [4,7,9,12,13] to handle
SQL GROUP BY or aggregate queries. The hyper-
cube is constructed so that each cell corresponds to
a unique combination of database attribute values.

Given a database with [number of attributes, the
number of cells in the corresponding fully populated
data cube is [[,.;<,(a; + 1) where each attribute i
has a; values [10,11].

The complete creation of the data cube is essen-
tially impossible because the number of hypercube
cells is prohibitive. The complete creation of the data
cube is unnecessary because some combinations of at-

tributes may not be used by the database.

In a streaming database, data streams come in at
a high rate (gigabits per second) and the database
is dynamic where data records are constantly added.
Examples of such data streams are: network traf-
fic, web sit hits, credit card transactions, road traf-
fic, video, power supplies, phone calls, and financial
markets. Applying OLAP to streaming databases is
not only a relatively new problem but a much more
difficult problem than traditional OLAP (data ware-
housing).

Current data cubes are commonly supported by
star schema databases. A star schema is optimized to
minimize string space - all string attributes are stored
in separate dimension tables. Each dimension table
is sorted to optimize query performance. Dimension
table insertion time thus depends on the table size
and is O(logn) where n is the number of records in
a table. Star schema insertion time then, is the sum
of all dimension table insert times O(>, -, -,(logn;))
where [is the number of attributes in the database
and n; is the number of values for attribute i.

A common problem with a star schema is that it
cannot keep up with input data stream rates, which
results in database filtering, which in turn limits
OLAP effectiveness. This paper presents a new type
of star schema: the stream star schema that is much
better at keeping up with data stream rates. This
eliminates the need for database filtering and thus
empowers streaming OLAP.

The stream star schema is optimized to minimize
insertion time. This star schema uses a global string
table to store all data strings. Multiple copies of
strings are allowed in the string table. The string

table does not need to be sorted - thus strings are
appended, resulting in a constant insert time. String
attributes are only represented by dimension tables
when duplication is significant. This results in a
constant insertion time for dimension tables. Thus
stream star schema insertion time is constant and
does not depend on the size of the database.

2 Related Work

Currently, there are three kinds of OLAP data cube
implementation [4,7,9,12,13].

In Relational OLAP (ROLAP), a relational
database is used as the data implementation. This
typically is a star schema [10]. The star schema was
invented by Ralph Kimball [5,6]. The star schema
does not support OLAP - hence a data cube has to
be created.

In Multi-dimensional OLAP (MOLAP) - a multi-
dimensional data cube (hypercube) is used as the
data implementation. MOLAP does not support On-
Line Transactional Processing (OLTP).

In Hybrid OLAP (HOLAP), a combination of RO-
LAP and MOLAP is used. A relational database is
used to store data values and a data cube is used to
store data aggregates.

Streaming OLAP exacerbates the data cube cre-
ation problem since input rates can be high. For a
one gigabit Network Interface Card (NIC), the effec-
tive input stream rate can be as high as 3 million
flows per hour. Some authors use filtering which is
restrictive [1-3,8]. A better (complete) method is to
input the entire data stream into the database. Thus
database insertion time has to improve.

3 Solution

In this section, the star schema is described. The
challenges presented by streaming data are discussed
which motivates the proposed new database: the it
stream star schema. The stream star schema is then
defined and illustrated by an example. Advantages
and disadvantages are discussed.

For this paper, the network data stream is used as

a reference example. A network data stream record
consists of the 16 tuple: {content, time stamp, des-
tination ip, destination location, destination port,
mail bcec, mail cc, mail file name, mail recipient,
mail sender, mail subject, protocol, size, source ip,
source location, source port}. String attributes are
{content, destination location, mail bee, mail cc, mail
file name, mail recipient, mail sender, mail subject,
protocol, source location}. Numeric attributes are
{time stamp, destination ip, destination port, size,
source ip, source port}.

A star schema is usually constructed to minimize
string space [5,6]. A star schema consists of fact
tables and dimension tables. Fact table string at-
tributes point to dimension tables to minimize disk
space. Numeric attributes are of fixed size and thus
are not coalesced into dimension tables. Dimension
tables are usually sorted to support OLTP.

Insertion time into a dimension table is O(logn)
where n is the number of rows in the dimension table.
Thus star schema insertion time is O(, -, ,(log n;))
where [is the number of dimension tables and n; is
the number of records in dimension table 3.

The star schema for the network data stream con-
tains a separate dimension table for each string at-
tribute. This star schema thus contains a single fact
table {flow} and 7 dimension tables {content, loca-
tion, mail file name, mail recipient, mail sender, mail
subject, protocol} for the string attributes.

A stream star schema is optimized to minimize in-
sertion time. Thus, this star schema has a single
string table which contains all database strings. The
string table does not need to be sorted. So string ta-
ble insertion simply consists of appending a string to
the table, resulting in constant insertion time. Du-
plicate strings are thus allowed in the string table.
All string attributes are indices into the global string
table. Dimension tables are created for string at-
tributes that have significant duplication. Thus di-
mension table insertion time is constant.

The stream star schema for the network data
stream contains a single fact table {flow} and 2
dimension tables {content, protocol}. There are
59 possible protocol types and 201 possible content
types. Thus both of these dimension tables are small.

The proposed stream star schema has two main

differences from a star schema. The first difference
is that all strings are stored in a global string ta-
ble. The second difference is data insertion. In the
star schema, strings are inserted into sorted dimen-
sion tables. This operation takes O(},,,(logn;))
time. In the stream star schema, all strings are ap-
pended to a global string table that is unsorted. This
reduces the insertion time to a constant. Clearly the
disadvantage of this solution is that the global string
table may become large.

A star schema focuses on minimizing disk space.
Dimension tables are sorted without duplication.
The down side is that insertion time for each data
record is O(_,.,;-,(logn;)) and becomes unaccept-
able when the database size becomes large and the
data rate is high. The stream star schema is proposed
to keep up with the incoming data stream rate. The
focus is thus not on minimizing disk space but rather
on minimizing insertion time. There is a tradeoff be-
tween disk space and insertion time. In the stream
star schema, more dimension tables can be created
for string attributes as long as the database can keep
up with the input data stream rate. The fastest
database is one without any dimension tables. Ta-
ble 1 summarizes the advantages and disadvantages
of this database and the star schema.

4 Experimental Results

This section presents an application of the stream
star schema. A generic stream star schema engine
was implemented that used an XSD to define the in-
put data stream. This XSD was defined for the net-
work data stream. A star schema engine was imple-
mented for the network data stream using MySQL.

The performance metrics for inserting one million
network data streams into the star schema and the
stream star schema are presented in Table 2 and Fig-
ure 1.

Table 2 and Figure 1 show that the star schema
could insert less than 700,000 network data streams
per hour. The stream star schema could insert more
than 133,000,000 network data streams per hour.
The difference is a factor of 177, which is significant.

My experiments show the maximum effective net-

10000 T . . T T T T T T
i V//—/—/‘—‘/\t
=}
c
[=}
(5]
(]
g 1000 1
S
£ Star Schema ——
GE) Stream Star Schema ——
= 100
c
2
o] P NN e E—————— VA
%]
£

10

0 100 200 300 400 500 600 700 800 900 1000
Number of Data Streams (x1000)

Figure 1: Database insertion time per data stream (in
usecs) when inserting 1 million network data streams
into the stream star schema and star schema.

work data stream input rate for a 1 gigabit NIC is
3 million per hour. Clearly, the star schema cannot
handle this input rate. My database can easily han-
dle this input rate. So much so, that it could handle
a 37 gigabit NIC.

The flexibility of the stream star schema allows
for some tuning when applied to the network data
stream. Since this database can easily handle the in-
put rate, spare cpu cycles could be used to convert
other string attributes to dimension tables - thus op-
timizing disk space without a loss of input.

Table 3 compares the memory usage for the two
databases when inserting one million network data
streams. This table shows that the stream star
schema database was superior to the star schema by a
factor of 2. The reason is that star schema dimension
tables are sorted - thus requiring index tables.

5 Conclusion

This paper has presented a new approach to pro-
cessing data streams: the stream star schema. This
new type of star schema is proposed to accommo-
date high data stream rates: giga bits per second,
by reducing insertion time to a constant. An exper-
imental implementation of both star schema types
on the network data stream showed that stream star
schema insertion performance is constant and supe-
rior to star schema insertion performance by a fac-

Stream Star Schema | Star Schema \

Three kinds of tables - fact, dimension, string. | Two kinds of tables - fact, dimension.

Few dimension tables. All string dimensions have dimension tables.
Minimize insertion time. Minimize disk space.

Dimension tables are small. Dimension tables can be large.

Insert time is constant. Insert time = O(Z:f:1 logn;)

Allow string duplication. Do not allow string duplication.

Table 1: Comparison of the stream star schema and the star schema.

Database type. Stream Star Schema | Star Schema

Time to insert 1 data stream in usecs. 31.77 1,293 to 7,517

Network data stream input rate per second. 31,476 177

Network data stream input rate per minute. 1,888,574 10,619

Network data stream input rate per hour. 113,314,447 637,135

Time to input 1 million network data streams. | 31.77 seconds 1 hour, 34 minutes, 10 seconds

Table 2: Performance metrics for inserting 1 million network data streams into the stream star schema and
star schema.

Database type. Stream Star Schema | Star Schema
Tnput bytes. 182,211,249 182,211,249
Memory bytes. 167,005,635 333,048,780
Raio of memory bytes to input bytes. | 0.92 1.83
Memory bytes per stream. 167 133

Table 3: Memory usage when inserting 1 million network data streams into the stream star schema and star
schema.

tor of 177. In addition, star schema memory usage
was greater than stream star schema memory usage
by a factor of 2. My experiments thus show that
the stream star schema improves performance for ex-
isting OLAP applications. In addition, the stream
star schema enables security applications and foren-
sic processing.

References

[1]

2]

Y. Chen, G. Dong, J. Han, B. Wah, and J. Wang,
“Multi-dimensional regression analysis of time-
series data streams,” in 28th International Con-
ference on Very Large Data Bases, August 2002.

C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu,
Mining Frequent Patterns in Data Streams at
Multiple Time Granularities, ch. 3, pp. 191-210.
Chapman and Hall, 2003.

J. Han, “Mining unusual patterns by multi-
dimensional analysis of data streams,” tech. rep.,
University of Illinois at Urbana-Champaign,
2002.

T. Johnson and D. Sasha, “Some approaches
to index design for cube forests,” Bulletin of
the IEEE Computer Society Technical Commit-
tee on Data Engineering, 1999.

R. Kimball, “www.ralphkimball.com.”

R. Kimball and J.Caserta, The Data Warehouse
ETL Toolkit. Wiley, 2004.

Y. Kudryavcev, “Efficient algorithms for MO-
LAP data storage and query processing,”
in Spring Young Researcher’s Colloguium on
Database and Information Systems, June 2006.

X. Li, J. Han, Z. Yin, J. Lee, and Y. Sun,
“Sampling cube: A framework for statistical
OLAP over sampling data,” in 28th ACM SIG-
MOD/PODS International Conference on Man-
agement of Data/Principles of Data Systems,
June 2008.

[9]

[10]

M. Sabhnani, A. Moore, and A. Dubrawski, “T-
cube: A data structure for fast extraction of time
series from large datasets,” Tech. Rep. CMU-
ML-07-114, Carnegie Mellon, April 2007.

A. Shukla, P. M. Deshpande, J. F. Naughton,
and K. Ramasamy, “Storage estimation for mul-
tidimensional aggregates in the presence of hi-
erarchies,” in 22nd International Conference on
Very Large Data Bases, September 1996.

Y. Sismanis, Y. Kotidis, A. Deligiannakis, and
N. Roussopoulos, “Hierarchical dwarfs for the
rollup cube,” in ACM Sixth International Work-
shop on Data Warehousing and OLAP, Novem-
ber 2003.

N. Stefanovic, J. Han, and K. Koperski,
“Object-based selective materialization for ef-
ficient implementation of spatial data cubes,”
IEEE Transactions on Knowledge and Data En-
gineering, vol. 12, no. 6, 2002.

Y. Zhao, P. Deshpande, and J. F. Naughton,
“An array-based algorithm for simultaneous
multidimensional aggregates,” in ACM SIG-
MOD International Conference on Management
of Data, May 1997.

