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Abstract

Traditional OLAP data cubes only store data aggre-
gates and existing designs are unable to efficiently
maintain access to complete data records. In this pa-
per we present a new type of data cube: the data value
cube capable of storing both data record indices as well
as data aggregates. This allows OLAP to drill down
into data records and values, thus extending the capa-
bilities of OLAP beyond simply presenting summaries
and expanding the scope of applications for OLAP.
This is particularly useful in applications that con-
centrate on detecting anomalies, a critical feature for
applications in the increasingly critical security do-
main. We present our novel design and evaluate its
performance, showing that the data value cube per-
forms as well as existing data cubes while offering
full data value access.

1 Introduction

OnLine Analytical Processing (OLAP) engines are
commonly implemented as multidimensional data
cubes - called hypercubes [2, 5, 7, 11, 12] to handle
SQL GROUP BY or aggregate queries. The hyper-
cube is constructed so that each cell corresponds to
a unique combination of database attribute values.

Given a database with l number of attributes, the
number of cells in the corresponding fully populated
data cube is

∏
1≤i≤l(ai + 1) where each attribute i

has ai values [8, 9].
The complete creation of the data cube is essen-

tially impossible because the number of hypercube
cells is prohibitive. The complete creation of the data

cube is unnecessary because some combinations of at-
tributes may not be used by the database.

In a streaming database, data streams come in at
a high rate (gigabits per second) and the database is
dynamic where data records are constantly added.

Examples of such data streams are: network traf-
fic, web sit hits, credit card transactions, road traffic,
video, power supplies, phone calls, and financial mar-
kets.

Current data cubes consist solely of data aggre-
gates or summations. We are the first to propose ex-
tending the data cube to also maintain record values.
This provides a more powerful OLAP to applications
that are concerned with security and forensics.

2 Related Work

Currently, there are three kinds of OLAP data cube
implementation [2, 5, 7, 11,12].

In Relational OLAP (ROLAP), a relational
database is used as the data implementation. This
typically is a star schema [10]. The star schema was
invented by Ralph Kimball [3, 4]. The star schema
does not support OLAP - hence a data cube has to
be created.

In Multi-dimensional OLAP (MOLAP), a multi-
dimensional data cube (hypercube) is used as the
data implementation. MOLAP does not support On-
Line Transactional Processing (OLTP).

In Hybrid OLAP (HOLAP), a combination of RO-
LAP and MOLAP is used. A relational database is
used to store data values and a data cube is used to
store data aggregates.
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The MOLAP data cube was originally imple-
mented as a multi-dimensional array [1,5,6,12]. Cur-
rently, most advanced OLAP applications implement
the data cube as a tree forest [2, 5, 9, 10]. Each di-
mensional attribute is a separate and distinct tree.
Each tree node points to another tree at the next
dimension. In addition, each node contains a data
aggregate for that attribute combination.

3 Solution

In this section we describe current MOLAP data
cubes and their limitations. This motivates an ex-
tension to the data cube: the data value cube. We
finish by showing how our solution extends the power
of OLAP to a new class of problems.

Currently the best available data cube is a bal-
anced b-tree forest [2, 5, 9, 10]. In general, each tree
node (at a particular dimension) points to another
tree at the next dimension. In addition, each tree
node contains the aggregate for that combination of
dimensions. Construction time for the tree forest is
O(

∑
1≤i≤d(log ni)) where d is the number of query

dimensions and ni is the number of attributes in the
database. at level d.

One problem with the b-free forest is that it is
limited to data aggregates. Data aggregates only
identify the existence of a dimensional combination.
They do not provide access to complete data records.
With current OLAP implementations, examining
data records requires issuing additional database
queries, which is inefficient.

We solve this problem by extending a balanced b-
tree forest to include references to data records. We
call this new type of hypercube: the data value cube.
Thus for our data cube, tree nodes not only contain
data aggregates but a linked list of data record in-
dices.

We claim that construction time for the data value
cube is the same as a balanced b-tree forest. We
prove this claim by noting that construction of our
data cube is identical to the balanced b-tree forest,
except for the addition of the linked list of data record
indices. Adding an index to this linked list takes
constant time, since the linked list is not sorted. And

thus our proof is complete.
The data value cube increases the power of OLAP

for applications that perform forensic analysis. For
security applications, simple data aggregates are in-
sufficient. Our solution enables OLAP to drill down
past data aggregates and completely examine data
records. Data aggregates identify data cube cells that
are potentially of interest. Our data cube allows ap-
plications to verify data cube cell relevance and thus
expand or contract the depth and breadth of queries.

4 Experimental Results

This section presents an application of the data value
cube. A generic stream star schema engine was im-
plemented that used an XSD to define the input data
stream. This XSD was defined for the network data
stream. A generic data value cube was implemented
that used the same XSD to define the input data
stream for the stream star schema. A star schema
engine was implemented for the network data stream
using MySQL. SQL GROUP BY queries were used
to create data cubes from the star schema.

Both databases consisted of one million network
data stream records (flows).

Network Data Stream queries were run on both
databases. Query dimensions were from 1 to 16.

Figure 1 summarizes the performance results. Fig-
ure 1 shows that data value cube creation time was
superior by a factor of at least 2. Figure 1 also shows
that our data cube creation time was linear with re-
spect to the number of dimensions and thus modular
and predictable. This is highly beneficial to OLAP
since the purpose of OLAP is to minimize query re-
sponse time and improve the user experience.

The fact that data value cube creation time was
so superior is an unexpected result. We were un-
able to completely determine why, since the MySQL
source code was not available. Be that as it may,
we now present some thoughts on the causes. First,
MySQL has to support SQL in its entirety, while the
data value cube is only concerned with GROUP BY
queries. Second, the stream star schema was chun-
ked with 1 million records. Perhaps the star schema
chunking was not as efficient. And last, the star
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Figure 1: Query time (in seconds) for a stream star
schema and star schema with million network data
streams.
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Figure 2: Memory usage (in Bytes) when querying
a stream star schema with 1 million network data
streams.

schema had 7 dimension tables for the network data
stream. Our database had only 2 dimension tables.

Figure 2 shows the memory usage for the data
value cube. Obtaining MySQL query memory us-
age was not feasible. Be that as it may, table 2 shows
that memory usage for the data value cube was lin-
ear, scalable, and thus predictable.

5 Conclusion

This paper has presented a new type of OLAP data
cube: the data value cube, capable of storing both
data record indices as well as data aggregates. The
time complexity of constructing such a data cube is

O(
∑

1≤i≤d(log ni)) where d is the number of query
dimensions and ni is the number of attributes in the
database. at level d. This time complexity was ver-
ified through experimentation. So not only does the
data value cube match the performance of existing
data cubes, it allows OLAP to drill down into data
records and values. This extends the capabilities of
OLAP beyong simply presenting summaries and ex-
pands the scope of OLAP applications. This is of
particular concern to applications that concentrate
on detecting anomalies, a critical feature for applica-
tions in the increasingly critical security domain.
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